

考向一 比较大小
比较大小的常用方法:
(1)作差法的一般步骤是:作差,变形,定号,得出结论.
注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.
(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论.
注意:作商时各式的符号为正,若都为负,则结果相反.
(3)介值比较法:
①介值比较法的理论根据是:若a>b,b>c,则a>c,其中b是a与c的中介值.
②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值.
(4)利用单调性比较大小.
(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.

考向二 求范围的问题
求范围的问题需用到不等式的性质,熟记不等式性质中的条件与结论是基础,灵活运用是关键.在使用不等式的性质时,一定要注意不等式成立的前提条件,特别是不等式两端同时乘以或同时除以一个数、两个不等式相乘、一个不等式两端同时求n次方时,一定要注意其成立的前提条件,如果忽视前提条件就可能出现错误.
求范围的一般思路是:
(1)借助性质,转化为同向不等式相加进行解答;
(2)借助所给条件整体使用,切不可随意拆分所给条件;
(3)结合不等式的传递性进行求解;
(4)要注意不等式同向可乘性的适用条件及整体思想的运用.
考向三 一元二次不等式的解法
考向四 一元二次不等式与二次函数、一元二次方程之间关系的应用
考向五 一元二次不等式的应用
考向六 含参不等式恒成立问题的求解策略
参考答案
变式拓展
考点冲关
直通高考